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Couplings of Microstrip Square
Open-Loop Resonators for
- Cross-Coupled Planar Microwave Filters

Jia-Sheng Hong, Member, IEEE, and Michael J. Lancaster, Member, IEEE

Abstract— A new type of cross-coupled planar microwave
filter using coupled microstrip square open-loop resonators is
proposed. A method for the rigorous calculation of the coupling
coefficients of three basic coupling structures encountered in
this type of filters is developed. Simple empirical models are
derived for estimation of the coupling coefficients. Experiments
are performed to verify the theory. A four-pole elliptic function
filter of this type is designed and fabricated. Both the theoretical
and experimental performance is presented.

I. INTRODUCTION

ODERN microwave communication systems require,
especially in satellite and mobile communications,
high-performance narrow-band bandpass filters having low
insertion loss and high selectivity together with linear phase
or flat group delay in the passband. According to the early
work on filter synthesis [1], it has been known that when
frequency selectivity and bandpass loss are considered to be
the important filtering properties, then the optimum filters
are those exhibiting ripple in both passbands and stopbands.
Such a filter response can be realized using filters with cross
couplings between nonadjacent resonators [2]. These cross
couplings give a number of alternative paths which a signal
may take between the input and output ports. Depending
on the phasing of the signals, the multipath effect may
cause attenuation poles at finite frequencies or group delay
flattening, or even both simultaneously. Usually, the cross-
coupled resonator filters are realized using waveguide cavities
or dielectric resonator loaded cavities because of their low
loss. However, in order to reduce size, weight, and cost, there
has been a growing interest in planar structures [3]-[14].
The disadvantage of high conductor loss of the planar filters
using conventional conducting thin films can be overcome by
replacing them with high-temperature superconducting (HTS)
thin films. These can have a very low conductor loss [3]-[6].
An alternative is by combining with active MMIC devices to
compensate the loss [14].
One difficulty in realizing the cross-coupled microwave
filters in the planar structures is to identify and control the
required electric and magnetic couplings for the nonadjacent

Manuscript received April 18, 1996; revised July 22, 1996. This work
was supported by the Engineering and Physical Sciences Research Council
(EPSRC), UK.

The authors are with the School of Electronic and Electrical Engineering,
University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

Publisher Item.Identifier S 0018-9480(96)07906-9.

ﬂ[j E]IE}
= A0

six-pole

10

four-potle

Eight-pole

Fig. 1. Some cross-coupled planar microwave bandpass filters comprised of
coupled microstrip square open-loop resonators on substrate (not shown) with
a relative dielectric constant £, and a thickness h.

resonators. Several new cross-coupled planar filter structures
have been proposed recently, including the microstrip dual-
mode filters [3], [9], the dual-plane multicouple line filters
[10] and the microstrip square open-loop resonator filters
[13]. Shown in Fig. 1 are some typical cross-coupled planar
filters comprised of microstrip square open-loop resonators.
Compared with the microstrip dual-mode filters the microstrip
square open-loop resonator filters can have a smaller size. For
instance a four-pole dual-mode ring filter requires a circuit
size amounting to 2z, /7 X Ago/m, Where Ay, is the guided
wavelength at the midband frequency. Whilst the circuit size
for a four-pole open-loop resonator filter as shown in Fig. 1,
only amounts to Ago/4 X Ag,/4, giving more than 50% size
reduction. Compared with the dual-plane multicoupled 'line
filters, the microstrip open-loop resonator filters are much
simpler in structure, they require no grounding and coupling
apertures. It would also seem that the coupled square open-
loop resonators are more flexible to construct a variety of
cross-coupled planar filters which have the similar coupling
configurations as those of waveguide cavity cross-coupled
filters.
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Fig. 2. Basic coupling structures of coupled microstrip square open-loop
resonators on substrate (not shown) having a relative dielectric constant &, and
a thickness h. (a) Electric coupling structure. (b} Magnetic coupling structare.
(c) Mixed coupling structure.

For the waveguide cavity cross-coupled filters, the design
method, which is based on deriving a coupling matrix from
the transfer function and realizing the coupling matrix in terms
of intercavity couplings, is widely used for its simplicity and
accuracy [15] and [16]. It is thus desirable to adopt this
synthesis technique to design cross-coupled microstrip square
open-loop resonator filters. However, the application of such a
design approach requires the knowledge of mutual couplings
between coupled microstrip square open-loop resonators. This
paper derives this information on mutual coupling.

Three basic coupling structures encountered in the type of
cross-filters such as those in Fig. 1 are described in Section
II. Because the semi-open configuration and inhomogeneous
dieléctric medium of the coupling structures make the as-
sociated boundary value problem complicated, a full-wave
electromagnetic (EM) simulator is used to characterize the
couplings in terms of resonant mode splitting. Section III
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derives the relationships that are necessary for extracting
the coupling coefficients of the three basic coupling struc-
tures from the information of resonant mode splitting. In
Section IV we present numerical results and deduce simple
empirical models for estimation of the coupling coefficients.
Experimental results are also presented to verify the theory.
Section V demonstrates the filter application. A four-pole
cross-coupled microstrip filter comprised of coupled square
open-loop resonators is designed and fabricated. Theoretical
and measured performance of the filter is presented. Conclu-
sions are followed in Section VI.

II. COUPLING STRUCTURES

Shown in Fig. 2 are the three basic coupling structures
encountered in the type of cross-coupled filters in Fig. 1. The
coupled structures result from different orientations of a pair
of identical square open-loop resonators which are separated
by a spacing s and may or may not be subject to an offset d. It
is obvious that any coupling in those coupling structures is that
of the proximity coupling, which is, basically, through fringe
fields. The nature and the extent of the fringe fields determine
the nature and the strength of the coupling. It can be shown
that at resonance, each of the open-loop resonators has the
maximum electric field density at the side with an open-gap, .
and the maximum ‘magnetic field density at the opposite side.
Because the fringe field exhibits an exponentially decaying
character outside the region, the electric fringe field is stronger
near the side having the maximum electric field distribution,
while the magnetic fringe field is stronger near the side having
the maximum magnetic field distribution. It follows that the
electric coupling can be obtained if the open sides of two
coupled resonators are proximately placed as Fig. 2(a) shows,
while the magnetic coupling can be obtained if the sides
with the maximum magnetic field of two coupled resonators
are proximately placed as Fig. 2(b) shows. For the coupling
structure in Fig. 2(c), the electric and magnetic fringe fields at
the coupled sides may have comparative distributions so that
both the electric and the magnetic couplings occur. In this case’
the coupling may be referred to as the mixed coupling.

1II. FORMULATION FOR COUPLING COEFFICIENTS

The physical mechanism underlying the resonant mode
splitting is that the coupling effect can both enhance and
reduce the stored energy. It has been pointed out that two
resonant peaks in association with the mode splitting can be
observed if the coupled resonator circuit are over-coupled,
which occurs when the corresponding coupling coefficient is
larger than a critical value amounting to 1/@Q, with @ the
quality factor of the resonator circuit [17]. It is quite easy to
identify in the full-wave EM simulation the two split resonant
frequencies, which are related to the coupling coefficient.
Hence the coupling coefficient can easily be determined if the
relationships between the coupling coefficient and the resonant
mode splitting are found. In what follows we present the
formulation of such relationships for the coupled structures
in Fig. 2. -
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A. Electric Coupling

For the fundamental mode near its resonance, an equivalent
lumped-element circuit model for the coupling structure in
Fig. 2(a) is given in Fig. 3(a), where L and C are the self-
inductance and self-capacitance so that (LC)~1/2 equals the
angular resonant frequency of uncoupled resonators, and C,,
represents the mutual capacitance. At this stage it should be
make clear that the coupled structure considered is inher-
ently distributed element so that the lumped-element circuit
equivalence is valid on a narrow-band basis, namely, near
its resonance as we have emphasized at the beginning. The
same comment is applicable for the other coupled structures
discussed later. Now, if we look into reference planes 7y — T
and Tp — Ty, we can see a two-port network which may be
described by the following set of equations

I = jwCVy — jwC, Vs
I = jwCVs ~ jwCy, V1

(1a)
(1b)

in which a sinusoidal waveform is assumed. It might be well
to mention that (1a) and (1b) imply that the self-capacitance
C is the capacitance seen in one resonant loop of Fig. 3(a)
when the capacitance in the adjacent loop is shorted out. Thus,
the second terms on the right-hand side of (1a) and (1b) are
the induced currents resulted from the increasing voltage in
resonant loop 2 and loop 1, respectively. From (la) and (1b)
four Y -parameters

Yin =Yz

= jwC (2a)
Yio =Y

= — jwCh (2b)

can easily be found by definitions.

According to the network theory [18] an alternative form of
the equivalent circuit in Fig. 3(a) can be obtained and is shown
' in Fig. 3(b). This form yields the same two-port parameters
with those of the circuit of Fig. 3(a), but it is more convenient
for our discussions. Actually, it can be shown that the electric
coupling between the two resonant loops is represented by an
admittance inverter J = wCp,. If the symmetry plane T' — 7"
in Fig. 3(b) is replaced by an electric wall (or a short-circuit),
the resultant circuit has a resonant frequency

f. = 1

2 /L(C+Cp)
This resonant frequency is lower than that of uncoupled
single resonator, which has also been confirmed by the full-
wave simulations. A physical explanation is that the coupling
effect enhances the capability of storing charge of the single
resonator when the electric wall is inserted in the symmetrical
plane of the coupled structure. Similarly, replacing the symme-
try plane in Fig. 3(b) by a magnetic wall (or an open-circuit)
results in a single resonant circuit having a resonant frequency

1
s e, 4
f 21/ L(C — Cp,)
In this case the coupling effect reduces the capability of storing
charge so that the resonant frequency is increased.
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Fig. 3. (a) Equivalent circuit of the coupled open-loop resonators exhibiting
the electric coupling. (b) An alternative form of the equivalent circuit with an
admittance inverter J = wC', to represent the coupling.

Equations (3) and (4) can be used to find the electric
coupling coefficient kg

2 _ g2
kE:fm fe
fn+ 1t
Cm
~C ®

which is identical with the definition of ratio of the coupled
electric energy to the stored energy of uncoupled single
resonator.

B. Magnetic Coupling

Shown in Fig. 4(a) is an equivalent lumped-element circuit
model for the coupling structure in Fig. 2(b) near its resonance,
where L and C are the self-inductance and self-capacitance,
and L,, represents the mutual inductance. In this case the
coupling equations described the two-port network at reference
planes Ty — Ty and Ty — T4 are

Vi = jwLl; + jwLm Iy,
Va = jwLIy + jwLml.

(6a)
(6b)

Equations (6a) and (6b) also imply that the self-inductance
L is the inductance seen in one resonant loop of Fig. 4(a)
when the adjacent loop is open-circuited. Thus, the second
terms on the right-hand side of (6a) and (6b) are the induced
voltage resulted from the increasing current in loops 2 and
1, respectively. From (6a) and (6b) we can find four Z-
parameters

Z1y =2
=jwl, (7a)
Z1a =29
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Fig. 4. (a) Equivalent circuit of the coupled open-loop resonators exhibiting
the magnetic coupling. (b) An alternative form of the equivalent circuit with
an impedance inverter A = wL/ to represent the coupling.

= jw L. (7b)

Shown in Fig. 4(b) is an alternative form of equivalent
circuits having the same network parameters as those of
Fig. 4(a). Similarly, it can be shown that the magnetic coupling
between the two resonant loops is represented by an impedance
inverter K = wL,,. If the symmetry plane 7' — T" in Fig. 4(b)
is replaced by an electric wall (or a short-circuit), the resultant
single resonant circuit has a resonant frequency

1

fe= e J=ToC

It can be shown that the increase in resonant frequency,
which has also been observed in the full-wave simulations,
is because the coupling effect reduces the stored flux in the
single resonator circuit when the electric wall is inserted in
the symmetric plane. If the symmetry plane in Fig. 4(b) is
replaced by a magnetic wall (or an open-circuit), the resultant
single resonant circuit has a resonant frequency

PR S
2w~/ (L + Lm)O
In this case it turns out that the coupling effect increases the
stored flux so that the resonant frequency is shifted down.
Similarly, (8) and (9) can be used to find the magnetic
coupling coefficient ks

)

)

2 _ g2
ka = ____f; f?
e+ ra
= Lm (10)
=7
It should be emphasized that the magnetic coupling coefficient

defined by (10) corresponds to the definition of ratio of the
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coupled magnetic energy to the stored energy of uncoupled
single resonator. One might also notice that the magnetic
coupling defined by (10) and the electric coupling defined by
(5) are in phase opposition. This type of coupling is what we
really need for the realization of cross-coupled filters.

C. Mixed Coupling

For the coupling structure of Fig. 2(c), the electric and
magnetic field distributions on the coupled arms of two
resonators are comparative so that neither the electric coupling
nor the magnetic coupling can be ignored. Hence, in this case
the coupling may be referred to as the mixed coupling. For the
fundamental mode of this coupling structure near its resonance,
a network representation is shown in Fig. 5(a). Notice that
the Y -parameters are the parameters of a two-port network
looked into the left of reference plane 77 — 717 and the right
of reference plane To — T3, while the Z-parameters are the
parameters of the other two-port network looked into the right
of reference plane 77 — 7% and the left of reference plane
Ty — T4. The Y- and Z-parameters are defined by

Y11 =Yoo
=jwC,
Yis =Ya
= jwCy, (11)
Zy1 = Zoas
=jwL,
Zie = Zn
=ij:n. (12)

where C, L, C/,, and L/, are the self-capacitance, the self-
inductance, the mutual capacitance, and the mutual inductance
of an associated equivalent lumped-element circuit shown in
Fig. 5(b). It should be explained that the minus sign assigned
to the mutual capacitance is based on two facts. The first
fact is that the electric and magnetic couplings enhance each
other (add in phase). The second fact is that when the
symmetry plane of the equivalent circuit is shorted-circuit,
which may correspond to the excitation for the currents on
the coupled arms of Fig. 2(c) having the same magnitude but
the opposite direction, the resonant frequency is higher than
that of uncoupled single resonator. In Fig. 5(b), one can also
identify an impedance inverter K = wlL/, and an admittance
inverter J = wC/, which represent the magnetic coupling and
the electric coupling, respectively.

By inserting an electric wall and a magnetic wall into
the symmetry plane of the equivalent circuit in Fig. 5(b),
respectively, we obtain

1

S s EeAk -
1

J 2r+/(L + L,)(C + C.,) (14)

As can be seen that both the magnetic and electric couplings
have the same effect on the resonant frequency shifting. In
other words, they reduce or enhance the stored flux/charge of
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Fig. 5. (a) Network representation of the coupled open-loop resonators
exhibiting the mixed coupling. (b) An associated equivalent circuit with an
impedance inverter K = wL/, and an admittance inverter J = wC], to
represent the magnetic coupling and the electric coupling, respectively.

the single resonant circuit at the same time when the electric
wall or the magnetic wall is inserted.

From (13) and (14) the mixed coupling coefficient kp can
be found to be

f2 _ f2
i
_CL, +LCy,
T Lc+ L,

ks

(15)

It is reasonable to assume that L],C/, < LC, and thus (15)
becomes

Ly,  Cn

ko5

=Ky + K (16)

which clearly indicates that the mixed coupling is resulted

from the superposition of the magnetic and electric couplings,
which are in phase, as would be expected.
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IV. NUMERICAL COMPUTATIONS AND RESULTS

Before presenting any numerical results it should be re-
marked that for numerical computations, depending on the
particular EM simulator used as well as the coupling structure
analyzed, it may sometimes be difficult to implement the
electric wall or the magnetic wall, or even the both in the
simulation. For instance, the mixed coupling structure in
Fig. 2(c) is actually symmetrical about a rotational axis rather
than a plane. In this case, the difficulty can be removed easily
by analyzing the whole coupling structure instead of the half,
and finding the natural resonant frequencies of two resonant
peaks observable from the resonant frequency response. It can
be shown (see the Appendix) that the two natural resonant
frequencies obtained in this way are f. and f,,.

Shown in Fig. 6 are the typical resonant frequency responses
of the three types of coupled open-loop resonators, which are
obtained using a full-wave EM simulator based on the method
of moments [19]. The two resonant peaks which correspond
to the resonant frequencies f. and f,,, defined above, are
clearly identified. It can be seen that as the coupling spacing
s decreases the two resonant peaks move outwards and the
trough in the middle deepens, which implies an increase in
the coupling. It would also seem that for the same coupling
spacing the magnetic coupling is the strongest whereas the
electric coupling is the weakest. From the information of
resonant mode splitting the coupling coefficients can then be
extracted using (5), (10), and (15) derived in the last section.
The computed results give an insight into the characteristics
of couplings and indicate that the couplings depend not only
on the spacing but also on the other parameters.

Shown in Fig. 7 are the computed coupling coefficients for
different dielectric constants of substrate. The electric coupling
kr shows a dependence of dielectric constant. The lower the
dielectric constant, the stronger is the electric coupling. This
is because the electric field is much confined in the substrate
closer to the microstrip line having a higher dielectric constant.
The numerical results also indicate that for low values of
dielectric constant the variation of electric coupling with &, is
rapid while it is rather slow for high values of €,. Again from
Fig. 7 we can see that the magnetic coupling ks clearly shows
an independence of diclectric constant as what should be
expected. While the mixed coupling kg exhibits also a depen-
dence on dielectric constant because it involves electric cou-
pling. The width w of coupled open-loop arms (refer to Fig. 2)
is another parameter on which the couplings depend. Fig. 8
shows the computed couplings vary with respect to w. It would
seem that the couplings are stronger for a smaller w. The rea-
son for this is because the fringe field is stronger for a narrow
microstrip line. It is found that the couplings also depend on
the size a of open-loop resonator (refer to Fig. 2). One can
see in Fig. 9 that for the other parameters fixed the couplings
increase as the size a increases. This phenomenon may also
attribute to the increase in fringe field when a is increased. As
stated above the coupled open-loop resonators may or may not
be subject to an offset. Fig. 10 shows the computed coupling
coefficients with and without the offset. As can be seen the
magnetic and the mixed couplings do not change much against
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Fig. 6. Typical resonant mode splitting phenomena of the three types of
coupled microstrip square open-loop resonators.

the offset d of the coupled resonators, whereas the electric
coupling is more sensitive to the offset. For the filter realization
the offset in electric coupling structure can actually be avoided.

It may be convenient for the filter design to estimate the
couplings of coupled open-loop resonators using some closed
formulas. It is found that for a given substrate with a relative
dielectric constant &, and a thickness £, the coupling coeffi-
cients can be characterized in terms of normalized dimensions
s/h, w/h, and a/h. By fitting the numerical results obtained
above we find that the coupling coefficients may be fitted into
the following models

ke =15 Fo- exp(=Ac) - exp(~B.) - exp(-D.)

A, =0.2259 — 0.0157le, + 0.1 ver +1- %
— €r+1 8\ pe
B. = |1.0678 +0.266 ln< . )}(h) ,

w 4
pe = 1.0886 + 0.031 46 (ﬁ)
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for the magnetic coupling coefficient, and

Ky = 0.5k
Ky = 0.6k (19)

for the mixed coupling coefficient. Shown in Fig. 11 are the
coupling coefficients modeled by (17)—(19). Compared with
the simulated ones obtained by the full-wave simulation, an
accuracy better than 10% is achieved. The empirical formula
of (19) is able to demonstrate quantitatively that the magnetic
coupling is predominant in the mixed coupling case even
though both the electric and magnetic couplings occur. As an
example Fig. 12 plots the ratio of the electric coupling to the
magnetic coupling in a mixed coupling structure on a substrate
with a relative dielectric constant €, = 10.8 and a thickness
h = 1.27 mm. As can be seen the electric coupling is less than
80% of the magnetic coupling, and the ratio is even smaller as
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the spacing is increased because the electric coupling decays
faster than the magnetic coupling against the spacing.

The full-wave EM simulator used has been proved to
be quite accurate in its prediction. Nevertheless, a set of
microstrip coupled open-loop resonators in Fig. 2 having a
spacing 2.0 mm on a RT/Duroid substrate with e, = 10.8 and
a thickness h = 1.27 mm were fabricated and measured to
verify the theory. The measured coupling coefficients together
with those obtained from the full-wave simulations and the
closed-formulas are listed in Table 1 for comparison. Good
agreement are obtained.

V. FILTER APPLICATIONS

A four-pole elliptic function bandpass filter is used to
demonstrate the filter applications of the coupled microstrip
square open-loop resonators. The center frequency of the filter
is 2.46 GHz and the fractional bandwidth is 4%. The coupling
matrix and input/output singly loaded @ = 1/R to be realized
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are
0 0.0261 0 —0.0029
M= 0.0261 0 0.022 0
0 0.022 0 0.0261
—0.0029 0 0.0261 0
R =0.03501. 1))

The positive couplings Mis = Moy = M3y = Mys and
M55 = M3, are realized by the mixed and magnetic couplings,
respectively, while the negative coupling Myy = My are
realized by the electric coupling. The input/output loads are
achieved via tapped feed lines [20]. Fig. 13(a) shows the
layout of the filter and the frequency responses computed by an
ideal circuit model. The filter was fabricated on a RT/Duroid
substrate with a relative dielectric constant of 10.8 and a
thickness of 1.27 mm. The measured filter performance is
given in Fig. 13(b). The passband insertion loss is about 2.2
dB. This is mainly due to the conductor loss for a measured
resonator ¢) of 200.

Coupling Coefficient k,, Coupling Coefficient K

Coupling Coefficient ky
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Fig. 11. Comparison of the coupling coefficients modeled using the closed
formulas to those simulated using the full-wave EM simulator.
1.0 ¢
0.8 E— w/h=0.7874
s E aMm=55118
X E £=10.8
w 06 %
< :
-
% 04 E—
@ 3
02 E
O. EIILI[I_I;IIJ_KII_LIIIIIJ._IIII[IIII|IIIL
075 1.00 125 150 175 200 225 250

Normalized spacing sth

Fig. 12. Ratio of the electric coupling to the magnetic coupling in the mixed
coupling structure, showing the magnetic coupling is predominant.

V1. CONCLUSION

We have proposed a new type of planar cross-coupled filters
using coupled microstrip square open-loop resonators. In order
to apply the design technique which is widely used for the
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TABLE 1
CoUPLING COEFFICIENTS OF COUPLED MICROSTRIP SQUARE OPEN-LOOP
RESONATORS (€, = 10.8, h = 1.27 mm, w = 1.0 mm, s = 2.0 mm)

Type of couplin Measured | Simulated | Modelled

Electric coupling 0010 0.011 0011
Magnetic couplin, 0031 0.033 0.034

Mixed couplin 0.023 0.023 0.024

0 < - 0
E 9
E Tmm 5 E
ok £
g O g
~ 20 0O [ |
7 8 P 4-20 »
5 £ Lo 3 5
g 20f L E g
2 g Vo 330 2
g -40 E_ \ % g)
-50 E S -40
g 3
_60 E!LLLLL\IH]IILIIIIILlllllIHHI[J_LJ_Ll vllllll!l,\J_LLLlll -_50
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Eéé 2.0 B8 1eg MAS ’% 2.0 8 tog va 12.45 G:
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—15.21{1 8 -2,1768 B
a IMARKER 2
« = 2713 o
MARIKER 3
H 2,553 GHz
-42, 117 o
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/

|
[
|
/

\
\
§

/\\
1 é ~
m rEmEmer
(b)
Fig. 13. (a) Filter layout and performance of the ideal model for the four-pole

filter. (b) Measured filter performance.

waveguide cavity filters to the proposed type of microstrip
filters, a method for the rigorous calculation of the coupling
coefficients of the three basic coupling structures encountered
has been developed. We have presented the numerical results
of the coupling coefficients obtained using full-wave EM
simulations. The characteristics of the three types of couplings,
namely the electric, magnetic and mixed couplings have been
investigated. We have also derived three simple empirical
modes for estimation of the coupling coefficients of these types
of couplings. We have performed the experiments to verify
the numerical results. To demonstrate the filter application, we
have designed and fabricated a four-pole elliptic function filter
of this type. Both theoretical and experimental performances
of the filter have been presented.

2107

APPENDIX
PROVE THAT f. AND f,, ARE TWO
NATURAL RESONANT FREQUENCIES

It would seem that the best way to show that f. and
fm are the two natural resonant frequencies of the coupling
structures in Fig. 2 is to prove that f. and f,, are the two
eigen values of the eigen equation in association with the
individual coupling structure. For our purpose Fig. 14 shows
the modified equivalent circuits of the three coupling structures
of Fig. 2, where the resonators are all assumed tuned to the
normalized center frequency w, = 1/ VLC =1 and to have
normalized characteristic impedance z, = /L/C = 1. Thus
the mutual capacitance and inductance are normalized to C' and
L, respectively. By deriving the Z-matrix of each equivalent
circuit in Fig. 14 and imposing the boundary conditions V; =
V2 = 0 for natural resonance, the eigen equation can be found
to be

Zhy - Zag — 213+ Zoy = 0. 21
For the electric coupling circuit we have
Zyy = Zao
A
=5
Zoy = Zya
_1
=5
1—Cm (1-Cn)(1+Cn)
=14+ —7 2. m
A + . w C. ,
1—-Cp)(1 'm
B:jw( C)’( +C ). 22

With the normalized frequencies w = 27 - f. = 1/\1+ C,,

and w = 27 - f, = 1/y/1—Cy, of (3) and (4) defined

in Section III, (21) is satisfied. This proves that f. and f,,

are indeed the two eigen values or the two natural resonant

frequencies of the coupling structure of Fig. 2(a) regardless

whether or not the electric or the magnetic wall is inserted.
For the magnetic coupling circuit we have

711 = T
_A
=5

Zo1 =212

1

’Ev

=L (23)
Similarly, the eigen equation of (21) is satisfied with the
normalized frequencies w = 2w - f, = 1//1—L,. and
w=27m" fr, = 1/v/1+ L, of (8) and (9) given in Section
III, indicating that f. and f,, are the two eigen values or the
two natural resonant frequencies of the coupling structure of
Fig. 2(b) despite if the electric/magnetic wall is implemented
or not.
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—/YYYYY H— (YYYY
1H c 1H
V=0 (1-C)F == = (1-C.)F V=0
o — 5
Electric Coupling

o —YYY

—
F (LM (-LoH  AF

S
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Magnetic Coupling

i
(1+C)F ~ (1-L')H (1-L')H (1+C')F

V=0 L,
> .
‘ 1 -

Mixed Coupling

Fig. 14. Normalized equivalent circuits of the electric, the magnetic, and
the mixed coupling structures for deriving the eigen equation of the coupled
resonator circuit.

For the mixed coupling circuit we have

Z1y =2y ~
_ Zue+ Zi1o
R e
Zoy = Z1a
_ Zite — 211,
D —
1-w?(14 L)1+ Cr)
Zi1e = - )
Jw(l+Cr,)
2 / 7
Zi1 = 1-w?(1-L)(1-Cl) ' 24)
Jw(l+C! 1+ 2020, (1 — L)
As can be seen Zjj, = 0 for the normalized frequency
w = 21 f, = 1/3/1-L )1 =Cl) of (13) and
Z11e = 0 for the normalized frequency w = 27 - f, =

1/4/(L+ L,)(1 + C7.) of (14) so that, again, (21) is satisfied,
which give a proof that f. and f,, defined by (13) and (14) are
the two eigen values or the two natural resonant frequencies
of the coupling structure of Fig. 2(c) without inserting the
electric wall or the magnetic wall.
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