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Couplings of Microstrip Square
Open-Loop Resonators for

, Cross-Coupled Planar Microwave Filters
.lia-Sheng Hong, Member, IEEE, and

Abstract— A new type of cross-coupled planar microwave
filter using coupled microstrip square open-loop resonators is
proposed, A method for the rigorous calculation of the coupling
coefficients of three basic coupling structure~ encountered in
thk type of filters is developed. Simple empirical models are
derived for estimation of the coupling coefficients. Experiments
are performed to verify the theory. A four-pole elliptic function
filter of this type is designed and fabricated. Both the theoretical
and experimental performance is presented.

I. INTRODUCTION

M ODERN microwave communication systems require,
especially in satellite and mobile communications,

high-performance narrow-band bandpass filters having low
insertion loss and high selectivity together with linear phase

or flat group delay in the passband. According to the early
work on filter synthesis [1], it has been known that when
frequency selectivity and bandpass loss are considered to be

the important filtering properties, then the optimum filters
are those exhibiting ripple in both passbands and stopbands.

Such a filter response can be realized using filters with cross
couplings between nonadjacent resonators [2]. These cross
couplings give a number of alternative paths which a signal
may take between the input and output ports. Depending
on the phasing of the signals, the multipath effect may
cause attenuation poles at finite frequencies or group delay
flattening, or even both simultaneously. Usually, the cross-
coupled resonator filters are realized using waveguide cavities
or dielectric resonator loaded cavities because of their low

loss. However, in order to reduce size, weight, and cost, there

has been a growing interest in planar structures [3]-[14].
The disadvantage of high conductor loss of the planar filters

using conventional conducting thin films can be overcome by
replacing them with high-temperature superconducting (HTS)
thin films. These can have a very low conductor loss [3]–[6].
An alternative is by combining with active MMIC devices to
compensate the 10SS [14].

One difficulty in realizing the cross-coupled microwave
filters in the planar structures is to identify and control the

required electric and magnetic couplings for the nonadj scent
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Fig. 1. Some cross-coupled planar microwave bandpass filters comprised of
coupled microstrip square open-loop resonators on substrate (not shown) with
a relative dielectric constant ~. and a thickness h.

resonators. Several new cross-coupled planar filter structures
have been proposed recently, including the microstrip dual-

mode filters [3], [9], the dual-plane multicouple line filkers
[10] and the microstrip square open-loop resonator filkers
[13]. Shown in Fig. 1 are some typical cross-coupled planar

filters comprised of microstrip square open-loop resonators.

Compared with the microstrip dual-mode filters the microstrip

square open-loop resonator filters can have a smaller size. For

instance a four-pole dual-mode ring filter requires a circuit
size amounting to 2&0/T x Ago/n, where Ago is the guided
wavelength at the midband frequency. Whilst the circuit size
for a four-pole open-loop resonator filter as shown in Fig. 1,
only amounts to Ag. /4 x ~g. /4, giving more than 50V0 size

reduction. Compared with the dual-plane multicoupled’ line
filters, the microstrip open-loop resonator filters are much
simpler in structure, they require no grounding and coupling
apertures. It would also seem that the coupled square rqpen-
loop resonators are more flexible to construct a variet!y of
cross-coupled planar filters which have the similar coupling
configurations as those of waveguide cavity cross-coupled
filters.
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Fig. 2. Basic coupling structures of coupled microstrip square open-loop
resonators onsubsWate (not shown) having arelative dielectric constante, and
athicknessh. (a) Electric coupling structure, (b) Magnetic coupling structure.
(c) Mixed coupling structure.

For the waveguide cavity cross-coupled filters, the design
method, which is ‘based on deriving a coupling matrix from
the transfer function and realizing the coupling matrix in terms
of intercavity couplings, is widely used for its simplicity and
accuracy [15] and [16]. It is thus desirable to adopt this
synthesis technique to design cross-coupled microstrip square
open-loop resonator filters. However, the application of such a
design approach requires the knowledge of mutual couplings
between coupled microstrip square open-loop resonators. This
paper derives this information on mutual coupling.

Three basic coupling structures encountered in the type of
cross-filters such as those in Fig. 1 are described in Section
II. Because the semi-open configuration and inhomogeneous
dielectric medium of the coupling structures make the as-
sociated boundary value problem complicated, a full-wave

electromagnetic (EM) simulator is used to characterize the
couplings in terms of resonant mode splitting. Section III

derives the relationships that are necessary for extracting
the coupling coefficients of the three basic coupling struc-
tures from the information of resonant mode splitting. In

Section IV we present numerical results and deduce simple

empirical models for estimation of the coupling coefficients.
Experimental results are also presented to verify the theory.

Section V demonstrates the filter application. A four-pole
cross-coupled microstrip filter comprised of coupled square

open-loop resonators is designed and fabricated. Theoretical
and measured performance of the filter is presented. Conclu-
sions are followed in Section VI.

II. COUPLING STRUCTURES

Shown in Fig. 2 are the three basic coupling structures
encountered in the type of cross-coupled filters in Fig. 1. The

coupled structures result from different orientations of a pair
of identical square open-loop resonators which are separated
by a spacing s and mayor may not be subject to an offset d. It
is obvious that any coupling in those coupling structures is that
of the proximity coupling, which is, basically, through fringe
fields. The nature and the extent of the fringe fields determine
the nature and the strength of the coupling. It can be shown
that at resonance, each of the open-loop resonators has the

maximum electric field density at the side with an open-gap,

and the maximum ‘magnetic field density at the opposite side.
Because the fringe field exhibits an exponentially decaying
character outside the region, the electric fringe field is stronger
near the side having the maximum electric field distribution,
while the magnetic fringe field is stronger near the side having
the maximum magnetic field distribution. It follows that the
electric coupling can be obtained if the open sides of two
coupled resonators are proximately placed as Fig. 2(a) shows,
while the magnetic coupling can be obtained if the sides

with the maximum magnetic field of two coupled resonators

are proximately placed as Fig. 2(b) shows. For the coupling

structure in Fig. 2(c), the electric and magnetic fringe fields at

the coupled sides may have comparative distributions so that

both the electric and the magnetic couplings occur. In this case
the coupling may be referred to as the mixed coupling.

III. FORMULATIONFOR COUPLING COEFFICIENTS

The physical mechanism underlying the resonant mode
splitting is that the coupling effect can both enhance and
reduce the stored energy. It has been pointed out that two
resonant peaks in association with the mode splitting can be
observed if the coupled resonator circuit are over-coupled,
which occurs when the corresponding coupling coefficient is
larger than a critical value amounting to I/Q, with Q the
quality factor of the resonator circuit [17]. It is quite easy to
identify in the full-wave EM simulation the two split resonant
frequencies, which are related to the coupling coefficient.
Hence the coupling coefficient can easily be determined if the
relationships between the coupling coefficient and the resonant
mode splitting are found. In what follows we present the
formulation of such relationships for the coupled structures
in Fig. 2.
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A. Electric Coupling

For the fundamental mode near its resonance, an equivalent
lumped-element circuit model for the coupling structure in

Fig, 2(a) is given in Fig. 3(a), where L and C are the self-

inductance and self-capacitance so that (LC) – 1/2 equals the
angular resonant frequency of uncoupled resonators, and Cm

represents the mutual capacitance. At this stage it should be

make clear that the coupled structure considered is inher-
ently distributed element so that the lumped-element circuit
equivalence is valid on a narrow-band basis, namely, near
its resonance as we have emphasized at the beginning. The

same comment is applicable for the other coupled structures
discussed later. Now, if we look into reference planes T1 – T~
and T2 – T;, we can see a two-port network which may be
described by the following set of equations

11 = jwcvl – jwcml”z (la)

12 = jwCV2 – jwCmV1 (lb)

in which a sinusoidal waveform is assumed. It might be well

to mention that (1a) and (lb) imply that the self-capacitance
C is the capacitance seen in one resonant loop of Fig. 3(a)

when the capacitance in the adjacent loop is shorted out. Thus,
the second terms on the right-hand side of (la) and (lb) are
the induced currents resulted from the increasing voltage in
resonant loop 2 and loop 1, respectively. From (la) and (lb)
four Y-parameters

Yll = Y22

= jwc (2a)

Y12 = Y2~
—— – jwcm (2b)

can easily be found by definitions.
According to the network theory [18] an alternative form of

the equivalent circuit in Fig. 3(a) can be obtained and is shown
in Fig. 3(b). This form yields the same two-port parameters

with those of the circuit of Fig. 3(a), but it is more convenient
for our discussions. Actually, it can be shown that the electric

coupling between the two resonant loops is represented by an

admittance inverter J = wC~. If the symmetry plane T – T’
in Fig. 3(b) is replaced by an electric wall (or a short-circuit),

the resultant circuit has a resonant frequency

f==
1

(3)
2T4~ “

This resonant frequency is lower than that of uncoupled
single resonator, which has also been confirmed by the full-
wave simulations. A physical explanation is that the coupling
effect enhances the capability of storing charge of the single

resonator when the electric wall is inserted in the symmetrical

plane of the coupled structure. Similarly, replacing the symme-

try plane in Fig. 3(b) by a magnetic wall (or an open-circuit)
results in a single resonant circuit having a resonant frequency

(4)

In this case the coupling effect reduces the capability of storing
charge so that the resonant frequency is increased.

T’, T’,
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Fig. 3. (a) Equivalent circuit of the coupled open-loop resonators exhibiting
the electric coupling. (b) An alternative form of the equivalent circuit with an
admittance inverter J = tiC~ to represent the coupling.

Equations (3) and (4) can be used to find the electric
coupling coefficient !kE

~E=.fk-f:
.%+ f:
cm

‘c
(5)

which is identical with the definition of ratio of the coupled
electric energy to the stored energy of uncoupled single
resonator.

B. Magnetic Coupling

Shown in Fig. 4(a) is an equivalent lumped-element circuit

model for the coupling structure in Fig. 2(b) near its resonalmce,

where L and C are the self-inductance and self-capacitance,
and L~ represents the mutual inductance. In this case the
coupling equations described the two-port network at reference
planes T1 – T; and T2 – T; are

V1 = jwLI1 + jwL~12 , (6a)

V2 = jwL12 + jwLJ1. (6b)

Equations (6a) and (6b) also imply that the self-inductance
L is the inductance seen in one resonant loop of Fig. 4(a)

when the adjacent loop is open-circuited. Thus, the second

terms on the right-hand side of (6a) and (6b) are the induced

voltage resulted from the increasing current in loops 2 and
1, respectively. From (6a) and (6b) we can find four Z-
parameters

211 = 222

=jwL, (7a)

212 = 221
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Fig.4. (a) Equivalent circuit oftiecoupled open-loop resonators exhibiting
the magnetic coupling. (b) Anattemative form of the equivalent circuit with
an impedance inverter K = ~L~, to represent the coupling.

=jwL~. (7b)

Shown in Fig. 4(b) is an alternative form of equivalent
circuits having the same network parameters as those of
Fig. 4(a). Similarly, it can be shown that the magnetic coupling
between the two resonant loops is represented by an impedance
inverter K = wLn. If the symmetry plane T – T’ in Fig. 4(b)

is replaced by an electric wall (or a short-circuit), the resultant

single resonant circuit bas a resonant frequency

It can be shown that the increase in resonant frequency,
which has also been observed in the full-wave simulations,
is because the coupling effect reduces the stored flux in the
single resonator circuit when the electric wall is inserted in
the symmetric plane. If the symmetry plane in Fig. 4(b) is
replaced by a magnetic wall (or an open-circuit), the resultant

single resonant circuit has a resonant frequency

in this case it turns out that the coupling effect increases the
stored flux so that the resonant frequency is shifted down.

Similarly, (8) and (9) can be used to find the magnetic
coupling coefficient k~

~A* = f:- fk
f.+ f~
Lm

=
L“

(lo)

It should be emphasized that the magnetic coupling coefficient
defined by (10) corresponds to the definition of ratio of the

coupled magnetic energy to the stored energy of uncoupled
single resonator. One might also notice that the magnetic
coupling defined by (10) and the electric coupling defined by
(5) are in phase opposition. This type of coupling is what we

really need for the realization of cross-coupled filters.

C. Mixed Coupling

For the coupling structure of Fig. 2(c), the electric and
magnetic field distributions on the coupled arms of two
resonators are comparative so that neither the electric coupling

nor the magnetic coupling can be ignored. Hence, in this case

the coupling may be referred to as the mixed coupling. For the
fundamental mode of this coupling structure near its resonance,
a network representation is shown in Fig. 5(a). Notice that

the Y-parameters are the parameters of a two-port network
looked into the left of reference plane T1 – T{ and the right

of reference plane T2 – TJ, while the z-parameters we the

parameters of the other two-port network looked into the right
of reference plane T1 – T{ and the left of reference plane
T2 – Tj. The Y- and Z-parameters are defined by

Yll = Y22

=jwc,

Yl~ = Y21

= jwc~

211 = 222

= jwL,

212 = 2’21

= jwL~ . (12)

where C, L, CL, and L~ are the self-capacitance, the self-
inductance, the mutual capacitance, and the mutual inductance

of an associated equivalent lumped-element circuit shown in
Fig. 5(b). It should be explained that the minus sign assigned
to the mutual capacitance is based on two facts. The first
fact is that the electric and magnetic couplings enhance each
other (add in phase). The second fact is that when the
symmetry plane of the equivalent circuit is shorted-circuit,
which may correspond to the excitation for the currents on
the coupled arms of Fig. 2(c) having the same magnitude but

the opposite direction, the resonant frequency is higher than
that of uncoupled single resonator. In Fig. 5(b), one can also

identify an impedance inverter K = wL~ and an admittance
inverter J = wC& which represent the magnetic coupling and
the electric coupling, respectively.

By inserting an electric wall and a magnetic wall into
the symmetry plane of the equivalent circuit in Fig. 5(b),
respectively, we obtain

(11)

fe = 1

27r~(L – L~)(C – CQ ‘

fm = 1

27r~(L + L~)(C + CA) “

(13)

(14)

As can be seen that both the magnetic and electric couplings
have the same effect on the resonant frequency shifting. In
other words, they reduce or enhance the stored fluxlcharge of
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Fig. 5. (a) Network representation of the coupled open-loop resonators
exhibiting the mixed coupling. (b) An associated equivalent circuit with an
impedance inverter K = cJL~ and an admittance inverter J = w~~ to
represent the magnetic coupling and the electric coupling, respectively.

the single resonant circuit at the same time when the electric
wall or the magnetic wall is inserted.

From (13) and (14) the mixed coupling coefficient kEr can

be found to be

It is reasonable to assume that L~C~ < LC, and thus (15)
becomes

(16)

which clearly indicates that the mixed coupling is resulted
from the superposition of the magnetic and electric couplings,
which are in phase, as would be expected.

IV. NUMERICAL COMPUTATIONSAND RESULTS

Before presenting any numerical results it should be re-

marked that for numerjcal computations, depending on the

particular EM simulator used as well as the coupling structure
analyzed, it may sometimes be difficult to implement the
electric wall or the magnetic wall, or even the both in the
simulation. For instance, the mixed coupling structure in
Fig. 2(c) is actually symmetrical about a rotational axis rather

than a plane. In this case, the difficulty can be removed easily

by analyzing the whole coupling structure instead of the half,

and finding the natural resonant frequencies of two resonant

peaks observable from the resonant frequency response. It can

be shown (see the Appendix) that the two natural resonant
frequencies obtained in this way are f= and fm.

Shown in Fig. 6 are the typical resonant frequency responses

of the three types of coupled open-loop resonators, which are
obtained using a full-wave EM simulator based on the method

of moments [19]. The two resonant peaks which correspond
to the resonant frequencies ~. and fm, defined above,, are

clearly identified. It can be seen that as the coupling spacing

s decreases the two resonant peaks move outwards and the
trough in the middle deepens, which implies an increase in
the coupling. It would also seem that for the same coupling
spacing the magnetic coupling is the strongest whereas the
electric coupling is the weakest. From the information of
resonant mode splitting the coupling coefficients can theln be

extracted using (5), (10), and (15) derived in the last section.
The computed results give an insight into the chrtracteri sties

of couplings and indicate that the couplings depend not {only

on the spacing but also on the other parameters.

Shown in Fig. 7 are the computed coupling coefficients for
different dielectric constants of substrate. The electric coupling
kE shows a dependence of dielectric constant. The lower the
dielectric constant, the stronger is the electric coupling. This
is because the electric field is much confined in the substrate
closer to the micro strip line having a higher dielectric constant.
The numerical results also indicate that for low values of

dielectric constant the variation of electric coupling with S, is
rapid while it is rather slow for high values of C.. Again from
Fig. 7 we can see that the magnetic coupling kM clearly shows

an independence of dielectric constant as what should be
expected. While the mixed coupling k~ exhibits also a depen-

dence on dielectric constant because it involves electric cou-
pling. The width w of coupled open-loop arms (refer to Fig. 2)
is another parameter on which the couplings depend. Fig. 8

shows the computed couplings vary with respect to w. It would
seem that the couplings are stronger for a smaller w. The rea-

son for this is because the fringe field is stronger for a narrow

microstrip line. It is found that the couplings also depend on

the size a of open-loop resonator (refer to Fig. 2). One can
see in Fig. 9 that for the other parameters fixed the couplings
increase as the size a increases. This phenomenon may also
attribute to the increase in fringe field when a is increased. As
stated above the coupled open-loop resonators may or may not
be subject to an offset. Fig. 10 shows the computed coupling
coefficients with and without the offset. As can be seen the
magnetic and the mixed couplings do not change much against
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Fig. 6. Typical resonant mode splitting phenomena of the three types of
coupled microstrip square open-loop resonators.

the offset d of the coupled resonators, whereas the electric
coupling is more sensitive to the offset. For the filter realization
the offset in electric coupling structure can actually be avoided,

It may be convenient for the filter design to estimate the
couplings of coupled open-loop resonators using some closed
formulas. It is found that for a given substrate with a relative
dielectric constant e. and a thickness h, the coupling coeffi-
cients can be characterized in terms of normalized dimensions
slh, w/h, and alh. By fitting the numerical results obtained
above we find that the coupling coefficients may be fitted into
the following models

kE = ~ . F. . exp(–A.) . exp(–B,) . exp(–D.)

A. = 0.2259 – 0.015 71&, + 0.1 ~~~ . ;

13,=[1.0678+o.2%f5h(~)] (~)pe,

()
4

pe = 1.0886+ 0.03146 ~
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Fig. 7. Coupling coefficients for resonators with a = 7.0 mm, w = 1.0
mm, aud d = O.0 mm on a substrate with a thickness h = 1.27 mm and
different relatwe dielectric constants.

+.,,o,-o.o,w,fl f)’”

‘e=[-0g605+14087&0’17)
for the electric coupling coefficient

kA,=;.Fm. exp(–Am) . exp(–Bw) . exp(–Dm)

[ ()]Am = –0.06834 + 0.14142: + 0.08655 ; 3

()
Bm =1.2 . : ‘m,

—

dpm = 0.8885 – 0.1751 f

~~=[’154-08242fi+o’41’(i)
[Fm = – 0.5014+ 1.0051 a

T
–0.1557: (18)
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for the magnetic coupling coefficient, and

for the mixed coupling coefficient. Shown in Fig. 11 are the

coupling coefficients modeled by ( 17)–( 19). Compared with
the simulated ones obtained by the full-wave simulation, an

accuracy better than 109o is achieved. The empirical formula
of (19) is able to demonstrate quantitatively that the magnetic

coupling is predominant in the mixed coupling case even
though both the electric and magnetic couplings occur. As an

example Fig. 12 plots the ratio of the electric coupling to the
magnetic coupling in a mixed coupling structure on a substrate
with a relative dielectric constant e, = 10.8 and a thickness
h = 1.27 mm. As can be seen the electric coupling is less than
80% of the magnetic coupling, and the ratio is even smaller as
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Fig. 9. Coupling coefficients for coupled resonators with w = 1.0 mm,
d = 0.0 mm aud different size a on a substrate of t,= 10.8 and thickness
h = 1.27 mm.

the spacing is increased because the electric coupling decays
faster than the magnetic coupling against the spacing.

The full-wave EM simulator used has been proved to
be quite accurate in its prediction. Nevertheless, a set of
microstrip coupled open-loop resonators in Fig. 2 having a
spacing 2.0 mm on a RT/Duroid substrate with G = 10.8 and
a thickness h = 1.27 mm were fabricated and measured to
verify the theory. The measured coupling coefficients together
with those obtained from the full-wave simulations and the
closed-formulas are listed in Table I for comparison. Good
agreement are obtained.

V. FILTER APPLICATIONS

A four-pole elliptic function bandpass filter is used to
demonstrate the filter applications of the coupled microstrip
square open-loop resonators. The center frequency of the filter
is 2.46 GHz and the fractional bandwidth is 49o. The coupling
matrix and inputloutput singly loaded Q = 1IR to be realized
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are

[

o 0.0261 0 –0.0029

~ = 0.0261 0 0.022 0

0 0.022 0 0.0261

–0.0029 O 0.0261 0 1
R = 0.03501. (20)

The positive couplings iM12 = Lf21 = iM34 = iW43 and
iM23 = iW32 are realized by the mixed and magnetic couplings,
respectively, while the negative coupling iVf14 = iW41 are
realized by the electric coupling. The inputloutput loads are
achieved via tapped feed lines [20]. Fig. 13(a) shows the
layout of the filter and the frequency responses computed by an
ideal circuit model. The filter was fabricated on a RT/Duroid

substrate with a relative dielectric constant of 10.8 and a
thickness of 1.27 mm. The measured filter performance is
given in Fig. 13(b). The passband insertion loss is about 2.2

dB. This is mainly due to the conductor loss for a measured
resonator Q of 200.
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Fig. 11, Comparison of the coupling coefficients modeled using the closed
formulas to those simulated rising the full-wave EM simulator.
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Fig. 12. Ratio of the electric coupling to the magnetic coupling in the mixed
coupling structure, showing the magnetic coupling is predominant.

VI. CONCLUSION

We have proposed a new type of planar cross-coupled filters

using coupled microstrip square open-loop resonators. In order

to apply the design technique which is widely used for the
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TABLE I
COUPLINGCOEFFICIENTSOF COUPLEDMICROSTRIPSQUAREOPEN-LOOP
RESONATORS(C, =10.8, h=l.27mm, u~=l.Omm, s=2.0 mm)

-30

< -30
40

-50
-40

-60 -50

g

u))
‘5

2.2 2.3 2.4 2.5 2.6 2,7

Frequency (GHz)

(a)

Cm—rEu 2.463i@mm a-k
0.605mQam U12

(b)

Fig. 13. (a) Fllterlayout mdperfomance oftieided model forthe four-pole
filter. (b) Measured filter performance.

waveguide cavity filters to the proposed type of microstrip
filters, a method for the rigorous calculation of the coupling
coefficients of the three basic coupling structures encountered
has been developed. We have presented the numerical results
of the coupling coefficients obtained using full-wave EM
simulations. The characteristics of the three types of couplings,
namely the electnic, magnetic and mixed couplings have been
investigated. We have also derived three simple empirical
modes for estimation of the coupling coefficients of these types
of couplings. We have performed the experiments to verify
the numerical results. To demonstrate the filter application, we
have designed and fabricated a four-pole elliptic function filter
of this type. Both theoretical and experimental performances
of the filter have been presented.

APPENDIX

PROVE THAT ~e AND ~m ARE Two

NATURAL F@ONANT FREQUENCIES

It would seem that the best way to show that ~e and

jm are the two natural resonant frequencies of the coupling
structures in Fig. 2 is to prove that je and $m are the two
eigen values of the eigen equation in association with the
individual coupling structure. For our purpose Fig. 14 shows
the modified equivalent circuits of the three coupling structures
of Fig. 2, where the resonators are all assumed tuned to the
normalized center frequency WO= 1/~ = 1 and to have

normalized characteristic impedance ,zO= ~ =1. ‘rhus

the mutual capacitance and inductance are normalized to C and

L, respectively. By deriving the Z-matrix of each equivalent

circuit in Fig. 14 and imposing the boundary conditions VI =
V2 = O for natural resonance, the eigen equation can be found
to be

zl~ .222 – Z12 . Z21 = o. (21)

For the electric coupling circuit we have

zl~ = 222
A_—
B’

Z21 = Z12
1_—
B’

l–cm
A=l+T–w2.

(1 - Cm)(l +Cm)

m cm ‘

~ =jw (1 - Cm)(l +Cm)

cm
(22)

With the normalized frequencies w = 27r . ~, = 1/~{- Cm
.—

andw=2x. fm= l/~~ of (3) and (4) defined

in Section III, (21) is satisfied. This proves that f. and fm
are indeed the two eigen values or the two natural resonant
frequencies of the coupling structure of Fig. 2(a) regardless
whether or not the electric or the magnetic wall is inserted.

For the magnetic coupling circuit we have

211 = 222
A——
E’

Z21 = Z12
1—

E’

(1 - Lm,) - ~
A=l+

Lm ‘

B=~ (23)
jwLrrr ‘

Similarly, the eigen equation of (21) is satisfied with the
normalized frequencies u = 2X . f. = l/~~; and
w = 21T . fm = l/~~ of (8) and (9) given in Section

III, indicating that ~e and fm are the two eigen values or the
two natural resonant frequencies of the coupling structure of
Fig. 2(b) despite if the electric/magnetic wall is implemented
or not.
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CPY’T”TV
V,=o

/
(l-CJF-

-I- A (1-C.)F

/

V,=o

Electric Coupling

V*=O i= L. I V,=o

Magnetic Coupling

-c’.

1-
(1-L’JH (1 +C’JF

Mixed Coupling

Fig. 14. Normalized equivalent circuits of the electric, the magnetic, and
the mixed coupling structures for deriving the eigen equation of the coupled
resonator circuit.

For the mixed coupling circuit we have

Zll= Z2Z
’11. + 2110.—

2’
221 = z~~

Zlle – 2110
—

2’

211. =
1 –02(1 +L~)(l + c:)

ju(l +c~) ‘

2110 =
1 –J(1 – L~)(l – c’~)

(24)
Jw(l + c~)[l + 2#c~(l – L~)] “

As can be seen Z110 = O for the normalized frequency
w= 2T . fm = l/~(1 – L~)(l’– CL) of (13) and
211. = O for the normalized frequency w = 27r . fe =

1//(1 + LA )(1 + CL) of (14) so that, again, (21) is satisfied,
which give a proof that- ‘~. and jm defined-by (13) and (14) are
the two eigen values or the two natural resonant frequencies
of the coupling structure of Fig. 2(c) without inserting the
electric wall or the magnetic wall.
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